MANA for MPI

MPI-Agnostic Network-Agnostic Transparent Checkpointing

Rohan Garg, *Gregory Price, and Gene Cooperman Northeastern University

Why checkpoint, and why transparently?

Whether for maintenance, analysis, time-sharing, load balancing, or fault tolerance HPC developers require the ability to suspend and resume computations.

Two general forms of checkpointing solutions

1. Transparent

- No or Low development overhead

2. Application-specific

- Moderate to High development overhead

HPC Applications exist on a spectrum

Developers apply technologies based on where they live in that spectrum.

Puzzle

4 Nodes, 4 Cores/Ranks per Node

Can you solve checkpointing on... And restart on... Cray MPI over Infiniband MPICH over TCP/IP

8 Nodes, 2 Cores/Ranks per Node

Cross-Cluster Migration

It is now possible to checkpoint on

And restart on...

The Problem

How do we best transparently checkpoint an MPI Library?

The Answer

Don't. :]

HPC Checkpointing Spectrum

Low vs. High End: Defined by level of effort, funding, and time frame.

Short term Long Term

Low Investment High Investment

Transparent Checkpointing

Ready-made solution

Limit Cost / Effort

Hand-Rolled Solution

Maximize Results

Terms of the project dictate the technology employed

Transparency and Agnosticism

Transparency

- 1. No re-compilation and no re-linking of application
- No re-compilation of MPI
- 3. No special transport stack or drivers

Agnosticism

- 1. Works with any libc or Linux kernel
- Works with any MPI implementation (MPICH, CRAY MPI, etc)
- 3. Works with any network stack (Ethernet, Infiniband, Omni-Path, etc).

Alas, poor transparency, I knew him Horatio...

Transparent checkpointing could die a slow, painful death.

- 1. Open MPI Checkpoint-Restart service (Network Agnostic; cf. Hursey et al.)
 - MPI implementation provides checkpoint service to the application.
- 2. BLCR
 - Utilizes kernel module to checkpoint local MPI ranks
- 3. DMTCP (MPI Agnostic)
 - External program that wraps MPI for checkpointing.

These, and others, have run up against a wall:

MAINTENANCE

The M x N maintenance penalty

MPI:

- MPICH
- OPEN MPI
- LAM-MPI
- CRAY MPI
- HP MPI
- IBM MPI
- SGI MPI
- MPI-BIP
- POWER-MPI
-

Interconnect:

- Ethernet
- InfiniBand
- InfiniBand + Mellanox
- Cray GNI
- Intel Omni-path
- libfabric
- System V Shared Memory
- 115200 baud serial
- Carrier Pigeon
- ...

The M x N maintenance penalty

The M x N maintenance penalty

MANA: MPI-Agnostic, Network-Agnostic

The problem stems from checkpointing both the MPI coordinator and the MPI lib.

MANA: MPI-Agnostic, Network-Agnostic

The problem stems from checkpointing MPI - both the coordinator and the library.

Connections

Groups

Communicators

Link State

Achieving Agnosticism

Step 1: Drain the Network

Chandy-Lamport Algorithm

Node 1

MPI Coordinator

Node 2

MPI Rank

MPI Rank

MPI Rank

MPI Rank

As demonstrated by *Hursey et al.*, abstracting by "MPI Messages" allows for Network Agnosticism.

Inspired by Chandy-Lamport

Chandy-Lamport - Common mechanism of recording a consistent global state

Usage is established among MPI checkpointing solutions (e.g. Hursey et. al.)

- 1. Count the number of messages sent
- 2. Count the number of messages received or drained
- 3. When they're equivalent, the network is drained and safe to checkpoint.

Checkpointing Message Operations

- Apply Chandy-Lamport outside the MPI library, checkpointing MPI API calls.
- Can be naively applied to point-to-point communications
 - Send, Recv, iSend, iRecv, etc.
- Collectives (Scatter / Gather) could not be naively supported
 - Collectives can produce un-recordable MPI Library and Network events.
 - Can cause straggler and starvation issues when applied naively

- 1. Preface all collectives with a trivial barrier
- 2. When the trivial barrier is completed, call the original collective

- 1. Preface all collectives with a trivial barrier
- 2. When the trivial barrier is completed, call the original collective

- 1. Preface all collectives with a trivial barrier
- 2. When the trivial barrier is completed, call the original collective

Achieving Agnosticism

Step 2: Discard the network

Checkpointing A Rank

Solentiano il stilatione rank is simpler... right?

Problems:

MPI Rank

- MPI Implementation Specific
- Contains MPI network state
- Required by MPI and Application
- Platform dependant

MPI Application

MPI Library

LIBC and friends

- Grouping information
- Opaque MPI Objects

Heap Allocations

Isolation - The "Split-Process" Approach

Terminology Single Memory Space Checkpoint and Restore Upper-Half program **MPI** Application Standard C Calling Conventions No RPC involved MDI Droyy Library Discard and Re-initialize Lower-Half program MPI Library IVIPI LIDIALY LIBC and friends

Re-initializing the network

Runtime Record Configuration Calls Initialize, Grouping, etc Checkpoint Drain Network

Contains MPI network state

MPI Application
.... Config and Drain Info

Restart

- Replay Configuration
- Buffer Drained Messages

MPI Proxy Library

MPI Library

LIBC and friends

- Grouping information
- Opaque MPI Objects

Isolation

MPI Agnosticism Achieved

MPI Agnosticism Achieved

Upper Half:
Persistent Data

*Special care must be taken when replacing upper half libraries

Lower Half

Ephemeral Data

Lower half data can be replaced by new and different implementations of MPI and related libraries.

Checkpoint Process

Step 1: Drain the Network

Checkpoint Process

Step 1: Drain the Network

Step 2: Checkpoint Upper-Half

MPI Rank

MPI Application

Config and Drain Info

LIBC and friends

Restart Process

Step 1: Restore Lower-Half

MPI Proxy Library

MPI Library

LIBC and friends

Lower-half components may be replaced

Restart Process

Step 1: Restore Lower-Half

Step 2: Re-initialize MPI

MPI Proxy Library

MPI Library

LIBC and friends

MPI_INIT

Replay Configuration

Lower-half components may be replaced

Restart Process

Step 1: Restore Lower-Half

Step 2: Re-initialize MPI

Step 3: Restore Upper-Half

MPI Rank # assigned by MPI_Init used to select checkpoint file for restoring the upper half.

This avoids the need to virtualize MPI Rank numbers.

MPI Rank

MPI Application

Config and Drain Info

LIBC and friends

MPI Proxy Library

MPI Library

LIBC and friends

- MPI_INIT
- Replay Configuration

Lower-half components may be replaced

How to transparently checkpoint MPI App+MPI Lib?

Answer:

Don't Checkpoint the MPI Library

MPI Application

Config and Drain Info

LIBC and friends

Puzzle

Can you solve checkpointing on...

And restart on...

Cray MPI over Infiniband

1 2 6

11 12 15 16

10

14

4 Nodes, 4 Cores/Ranks per Node

MPICH over TCP/IP

8 Nodes, 2 Cores/Ranks per Node

NEW: Cross-Cluster MPI Application Migration

Traditionally, migration across disparate clusters was not feasible.

- Different MPI packages across clusters
- Highly optimized configurations tied to local cluster (Caches, Cores/Node)
- Overhead of checkpointing entire MPI state is prohibitive

Overhead of migrating under MANA:

- 1.6% runtime overhead after migration.*
- * Linux kernel 5.3 patch https://lwn.net/Articles/769355/ reduces overhead to 0.6%

But what about single-cluster overhead?

Application Benchmarks:

- miniFE, HPCG
 - o nearly 0% runtime overhead
- GROMACS, CLAMR, LULESH
 - 0.6% runtime overhead*

Memory Overhead

- Copied upper-half system libraries: static 26MB on all experiments
- Reduction in overall checkpointed data due to discarding lower-half memory.

^{*} requires Linux kernel patch https://lwn.net/Articles/769355/

Checkpoint-Restart Overhead

Checkpoint Data Size

- GROMACS 64 Ranks over 2 Nodes: 5.9GB
- HPCG 2048 ranks over 64 nodes: 4TB
- Largely dominated by memory used by benchmark program.

Checkpoint Time

- Largely dominated by disk-write time
- "Stragglers" a single rank takes much longer to checkpoint than others.

Restart Time

• MPI State reconstruction represented < 10% of total restart time.

Questions?